Ar solid –189℃ fcc density 1.66 g/cm3 radius
Ar is a solid below –189℃
with a face-centered cubic array of atoms
and a supposed density of 1.66 g/cm3.
Assuming that the atoms are spheres
in contact along the face diagonal,
what is the radius of a Ar atom (in Angstroms)?
An angstrom = 10^(-10) m or 10^(-8) cm.
Hint, first find the length of an edge of the unit cell.
(Argon’s actual density is 1.65 g/cm3.)
---------------------------------------------------
face-centered cubic = fcc
d = [M × Z] / [N_A × a^3]
= [M × Z] / [N_A × V]
( 참고 https://ywpop.tistory.com/12439 )
> M = 39.95 g/mol
> Z = 4 atoms (fcc 이므로,)
( 참고 https://ywpop.tistory.com/12440 )
> N_A = 6.022×10^23 atoms/mol
V = a^3 = [M × Z] / [N_A × d]
= [39.95 × 4] / [(6.022×10^23) × 1.66]
= 1.5986×10^(-22) cm3
a = (1.5986×10^(-22) cm3)^(1/3)
= 5.4273×10^(-8) cm
(5.4273×10^(-8) cm) (1 Å / (10^(-8) cm))
= 5.4273 Å
fcc의 edge length(a)
a = 4r / √2
r = a × √2 / 4
= 5.4273 Å × (2)^(1/2) / 4
= 1.9188 Å
---> radius of a Ar atom
답: 1.92 Å
[키워드] Ar solid –189℃ fcc density 2.32 g/cm3 radius 기준, Ar 원자의 반지름 기준, 아르곤 원자의 반지름 기준, 고체화학 기준
YOU MIGHT LIKE
모두 보기댓글 쓰기